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South Africa was among the first countries to detect the SARS-CoV-2 Omicron
variant. However, the size of its Omicron BA.1 and BA.2 subvariants (BA.1/2)
wave remains poorly understood. We analyzed sequential serum samples
collected through a prospective cohort study before, during, and after the
Omicron BA.1/2 wave to infer infection rates and monitor changes in the
immune histories of participants over time.We found that the Omicron BA.1/2
wave infected more than half of the cohort population, with reinfections and
vaccine breakthroughs accounting for > 60% of all infections in both rural and
urban sites. After the Omicron BA.1/2 wave, we found few (< 6%) remained
naïve to SARS-CoV-2 and the population immunologic landscape is frag-
mented with diverse infection/immunization histories. Prior infection with the
ancestral strain, Beta, andDelta variants provided 13%, 34%, and 51%protection
against Omicron BA.1/2 infection, respectively. Hybrid immunity and repeated
prior infections reduced the risks of Omicron BA.1/2 infection by 60% and 85%
respectively. Our study sheds light on a rapidly shifting landscape of popula-
tion immunity in the Omicron era and provides context for anticipating the
long-term circulation of SARS-CoV-2 in populations no longer naïve to
the virus.

One of SARS-CoV-2’s most prominent features has been its rapid
adaptive evolution throughout the pandemic: every few months, new
variants with selective advantages have emerged, displaced resident
variants, and reached global dominance. To date, the World Health
Organization has classified five SARS-CoV-2 lineages as variants of
concern (VOCs) due to their enhanced transmissibility and immune
escape properties, including Alpha, Beta, Gamma, Delta and
Omicron1,2. Following the rise ofOmicron (BA.1), new lineages continue
to evolve with further mutations, including those on the spike protein

not seenonOmicronBA.1 that evade immune responses (notablyBA.2,
BA.2.12.1, BA.4, and BA.53. The selective advantage of a new immune-
escape variant and subvariants is shaped in part by the host population
immunity, first at the location of emergence, and then globally4.

As of August 1st, 2022, South Africa has experienced five SARS-
CoV-2 epidemic waves: the 1st wave was dominated by the ancestral
strain carrying the D614G mutation (D614G); the 2nd wave by the Beta
VOC (with little impact of the Alpha VOC thatwas globally dominant at
that time5); the 3rd wave by the Delta VOC; the 4th wave by Omicron
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subvariants BA.1 and BA.2 (BA.1/2 wave); and the 5th wave by Omicron
subvariants BA.4 and BA.5 (BA.4/5 wave). In addition to the Beta VOC6,
the Omicron subvariants BA.1, BA.4 and BA.5, are likely to have
emerged in South Africa or the surrounding region7,8. Detailed studies
of the immunologic landscape in South Africa could provide a unique
perspective on how immunity contributes to variant success on a
population level, near the region of their emergence. The PHIRST-C
cohorts have generated detailed prospective data on infection and
serology spanning South Africa’s first four waves, in carefully sampled
populations from randomly selected households9. Here we quantify
changes in the population immunologic landscape to SARS-CoV-2 over
time, and particularly in the aftermath of the Omicron BA.1/2 wave,
compare Omicron’s epidemiologic properties to those of prior var-
iants, adjusting for changes in prior immunity, and discuss how these
factors may interact to determine the fate of new variants.

Results
Serologic specimen collection and SARS-CoV-2 dynamics in the
PHIRST-C cohort
As previously described in refs. 9,10, in June 2020, the Prospective
Household study of SARS-CoV-2, Influenza and Respiratory Syncytial
virus community burden, Transmission dynamics and viral interaction
in South Africa, PHIRST-C, where “C” stands for coronavirus disease

2019 (COVID-19) enrolled a total of 1200 individuals living in 222 ran-
domly selected households. Two sites were selected with 114 house-
holds (643 individuals) enrolled in a rural site located in Agincourt,
Mpumalanga Province, northeast South Africa and 108 households
(557 individuals) in an urban site, located in Jouberton township,
Matlosana,NorthWest Province, South Africa. From July 2020 through
April 2022, ten sequential serum specimens were collected for each
participant (Fig. 1). Blood draws 1-9 were conducted at approximately
2-month intervals, with blood draws 8 and 9 collected onemonth prior
and after the emergence of Omicron BA.1 variant in Southern Africa8.
Blood draw 10 was conducted at the end of the Omicron BA.1/2 wave,
~4 months after blood draw 9, but prior to the emergence of Omicron
BA.4/5 (Fig. 1)8. The cohorts included a period of intense follow-up of
active infections: ranging from July 16, 2020 to August 28, 2021 for the
rural site and from July 27, 2020 to August 28, 2021 for the urban site.
During the intense follow-up period, nasal swab samples were col-
lected twice-weekly for SARS-CoV-2 real-time reverse transcription
polymerase chain reaction (rRT-PCR), irrespective of symptoms. The
intense follow-up period covered the D614G, Beta, and Delta waves in
both cohorts.

We used sequential readouts of the Roche Elecsys Anti-SARS-CoV-
2 nucleocapsid assay11 before (blood draws 8, 9) and at the end of
(blood draw 10) the Omicron BA.1/2 wave to infer the cumulative rate

Fig. 1 | PHIRST-C study June 2020 – April 2022, SARS-CoV-2 serology and epi-
demiologic curve in the two study sites. A Serum samples and epidemiologic
curve in the rural site. Dots represent the Roche Elecsys Anti-SARS-CoV-2 nucleo-
capsid assay cutoff index (COI) at different timepoints of the serum specimen col-
lections; Each dot represents one serum specimen collection, with dot color
denoting blood draw collection time, from blue (early) to red (late). The shaded
curve at the bottom represents the daily incidence of SARS-CoV-2 cases in routine
surveillance data collected from the Ehlanzeni District, Mpumalanga Province.

Colors of the shaded curve represent different variant types. Here, blood draw (BD)
10was collected at the end of the first Omicronwave. Since in South Africa, Omicron
BA.4 and BA.5 only started to rise at April, 20228, we assume theOmicronwave prior
to BD 10 were BA.1 and BA.2 subvariants. The hatched area represents the period of
intense follow-up of the PHIRST-C cohort, when nasal swabs were collected and
tested on rRT-PCR at twice-a-week frequency. B Same as (A) but for the urban site,
with shaded curve at the bottom representing routine surveillance data collected
from the Dr. Kenneth Kaunda District, North West Province. BD Blood draw.
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of infections and re-infections during the Omicron BA.1/2 wave among
the cohort populations. The inferenceofprimary and repeat infections
withOmicronwas based on the dynamics of sequential serologic assay
readouts, after calibrating themethod on the Delta epidemic wave, for
whichwehad both serology and PCRdata. The analysis was performed
on a subset of 905 of 1200 cohort participants with complete serum
specimens collected during the relevant Delta and Omicron periods.
Details of the serologic inference and calibration are described in
Methods Section 3. We ascertained infections predating the Omicron
BA.1/2 wave based on both variant-specific PCR tests and serology, as
detailed in a prior study10, covering the period through blood draw 8,
or mid-September, 2021. All COVID-19 vaccinations were recorded,
although the vaccine coverage remained low in this population, with
< 20% individuals receiving 1 or more doses prior to the emergence of
the Omicron variant at both sites. We estimated Omicron BA.1/2’s
infection attack rate in each stratum as the total number of Omicron
BA.1/2 infections within the stratum divided by the total stratum
population. In Table 1, we summarize the site-specific infection attack

rate during the Omicron BA.1/2 epidemic wave, stratified by age, sex,
household size, HIV infection status, and prior SARS-CoV-2 exposures.
Here prior SARS-CoV-2 exposures include prior SARS-CoV-2 infec-
tion(s), SARS-CoV-2 vaccination, or both.

Increasing population immunity and changing immunologic
landscape over four epidemic waves among the PHIRST-C
cohort population
Infection attack rates of the Omicron BA.1/2 subvariants were sub-
stantially higher than those of previously circulating variants in both
study sites. In the rural site, infection rates for pre-Omicron variants
were 8.2% (95% CI 5.7–11.0%) for D614G, 20.7% (95% CI 17.1–24.3%) for
Beta and38.7% (95%CI 34.3–43.1%) forDelta,with higher attack rates in
each successive wave (Fig. 2A, left panel). In the urban site, infection
attack rates were more similar among pre-Omicron variants: 25.8%
(95% CI 21.6–30.0%) for D614G, 32.1% (95% CI 27.7–36.5%) for Beta,
23.2% (95% CI 19.2–27.2%) for Delta (Fig. 2B, left panel). Differences in
infection attack rates between the urban site and the rural site reflect
the spatial heterogeneity of SARS-CoV-2 circulation in South Africa.
Attack rates for the Omicron BA.1/2 subvariants reached 64.6% (95%CI
60.4–68.9%) in the rural site (Fig. 2A, left panel) and 58.1% (95% CI
53.4–62.8%) in the urban site (Fig. 2B, left panel).

Prior to the emergence of Omicron, in September 2021, the
cumulative infection rate (including reinfections), was 67.6% (95% CI
61.4–73.8%) in the rural site and81.0% (95%CI 73.8–88.3%) in theurban
site (Fig. 2A, B, right panels), withprimary infections accounting for the
majority of all infections in both sites (Fig. S5, left panels). In contrast,
reinfections were predominant with Omicron BA.1/2, with primary
infections representing only 37.9% (95%CI 32.5–43.3%) and 28.6% (95%
CI 23.0–34.3%) of all Omicron BA.1/2 infections in the rural and urban
site, respectively (Fig. S5, right panels). As a result, cohort participants
had experienced an average of 1.32 (95%CI 1.25–1.40) and 1.39 (95% CI
1.31–1.48) SARS-CoV-2 infection episodes in the rural and the urban
site, respectively, approximately 2 years into the pandemic (Fig. 2A, B).

Longitudinal rRT-PCR and serologic follow up at the individual
level, combined with household-level random sampling scheme, pro-
vide a unique opportunity to track the history of SARS-CoV-2 immu-
nizing events in the cohort populations, including vaccination
(partially or fully) and infection. Fig. 2C, D are Sankey flow diagrams
tracking the transitionof different SARS-CoV-2 exposure histories after
each of the four epidemic waves. The first three epidemic waves were
dominated by primary exposures toD614G, Beta, andDelta variants. In
addition, less than 20% of the population was vaccinated by either the
Janssen Ad26.COV2.S or the Pfizer–BioNTechBNT162b2 vaccines prior
to the emergence of Omicron. At the end of the third wave, only 30.1%
and 22.0% of the population remained naïve to SARS-CoV-2 in the rural
and the urban site, respectively. Most of the population had experi-
enced a single SARS-CoV-2 exposure prior to Omicron’s emergence
(55.9% in the rural and 54.8% in the urban site), while a minority had
two or more exposures (14.0% and 23.2% in the rural and urban site
respectively, Fig. S5). This observation is in line with the finding of a
durable immune protection conferred by prior infection and vacci-
nation in the pre-Omicron era10. In contrast, the large contribution of
re-infections during the Omicron wave shifted the population immune
landscape towards a dominance of repeat exposures. 52.1% of indivi-
duals in rural site and 60.4% in the urban site had experienced more
than one exposure, whether prior infection or vaccination, after the
fourth epidemic wave. The high proportion of reinfections observed
during the Omicron wave is in line with a high level of population
immunity predating Omicron BA.1/2’s arrival, combined with this var-
iant’s immune evasion properties (Fig. S5). As a result, the Omicron
BA.1/2 wave left behind a heterogeneous immunological landscape,
with population subgroups characterized by distinct exposure his-
tories, and no exposure category accounting for more than 25% of the
population (Fig. 2C, D).

Table 1 | Omicron BA.1/2 infection attack rate (AR) in rural and
urban cohorts of South Africa based on 905 participants with
complete serologic information (75% of the total 1200
participants)

Rural (478) Urban (427)

Characteristics n/N (AR%) n/N (AR%)

Age group, in years

0–4 42/64 (65.6) 19/37 (51.4)

5–12 129/185 (69.7) 76/113 (67.3)

13–18 39/59 (66.1) 46/67 (68.7)

19–39 44/64 (68.8) 50/77 (64.9)

40–59 37/71 (52.1) 43/91 (47.3)

60+ 18/35 (51.4) 14/42 (33.3)

Sex

Male 116/171 (67.8) 108/188 (57.4)

Female 193/307 (62.9) 140/239 (58.6)

Household size (no. individuals)

3–5 129/190 (67.9) 121/212 (57.1)

6–8 91/156 (58.3) 84/148 (56.8)

9–12 71/99 (71.7) 31/50 (62.0)

13+ 18/33 (54.5) 12/17 (70.6)

HIV status

Negative 257/392 (65.6) 201/345 (58.3)

PLWH* 39/63 (61.9) 41/71 (57.7)

Unknown 13/23 (56.5) 6/11 (58.2)

SARS-CoV-2 immunity status

Naive 117/144 (81.3) 71/94 (75.5)

Janssen Ad26.COV2.S (1dose) 9/11 (81.8) 2/2 (100)

Pfizer–BioNTech BNT162b2
(1st dose)

5/10 (50.0) 2/3 (66.7)

Pfizer–BioNTech BNT162b2
(2nd dose)

3/5 (60.0) 6/11 (54.5)

Prior infection (D614G) 20/27 (74.1) 47/67 (70.2)

Prior infection (Beta) 50/69 (72.5) 56/92 (60.9)

Prior infection (Delta) 81/149 (54.4) 33/61 (54.1)

Hybrid immunity† 19/41 (46.3) 15/47 (31.9)

Repeated infections 4/19 (21.1) 10/37 (27.0)

Rest‡ 1/3 (33.3) 6/13 (46.2)
*PLWH People living with HIV. †Hybrid immunity: one episode of prior infection and vaccination.
‡Rest: this category consists of repeat infections plus vaccination, vaccination with unknow
vaccine types, and prior infection with other less frequent lineages including Alpha and C.1.2
variants.
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Risk factors, increased infectivity and immune evasion of the
Omicron BA.1/2 variant, relative to Delta
Next, we fitted a chain-binomial household transmission model to the
inferred serologic infections to contrast the characteristics of theDelta
and Omicron variants, including the role of age, sex, household size,
and prior exposure history (see Methods Section 4 for details). We
further differentiated the risk of transmission of primary infections
and vaccine breakthroughs or reinfections, as well as the risk of
acquiring infection within the household and from the community
(stratified by age, sex and cohort site). We found that the Omicron
BA.1/2 variant was more than twice as likely to transmit as the Delta
variant (odds ratio Omicron vs. Delta: 2.36, 95% CI 2.12–2.63), after

controlling for other risk factors (Fig. 3). Vaccine breakthroughs and
reinfections were 41% less likely to transmit than primary infections
(odds ratio 0.59, 95% CI 0.46–0.73), suggesting a transmission reduc-
tion effect of prior immunity, in line with other findings12.

Prior work has demonstrated Omicron BA. 1/2’s significant
immune escape properties13–17. In our data (Fig. 3), the most recent
prior infectionwith the Delta variant still conferred significant residual
protection against Omicron (odds ratio 0.49, 95% CI 0.40–0.61), but
protection declined with earlier infections: the odds ratio of prior Beta
infection (2nd wave) was 0.66 (95% CI 0.52–0.84), while a prior D614G
infection (1st wave) did not offer significant protection (0.87 (95% CI
0.63–1.21)). In contrast, prior Beta and D614G infections conferred a

Fig. 2 | SARS-CoV-2 infectionattack rates and shifts in immunologic landscape.
A Infection attack rates in the rural site by variant type (left) and the
cumulative number of infection episodes per capita after each epidemic
wave (right), based on n = 905 participants. Dots and lines represent mean
and 95% confidence intervals. The end of the 1st wave is marked by blood
draw 2, 2nd wave is marked by blood draw 5, 3rd wave is marked by blood
draw 8, 4th wave is marked by blood draw 10. B Same as (A) but for the
urban site. C Sankey diagram demonstrating the distribution of different
type of immunologic exposures (including vaccination and infection) in the
population of the rural site after each epidemic wave and the transition of
immunologic exposures in-between waves. In the Sankey diagram, rectan-
gular nodes of the same color represent proportion of population of a given
immunologic state: gray color represents SARS-CoV-2 immunologic naïve

individuals; blue shades represent non-Omicron exposures; red shades
represent Omicron exposures; darker colors represent repeat exposures
while transparent shading represents primary exposures. Each column of
nodes represented the distribution of immunologic state within the cohort
population post a given epidemic wave. The vertical height of a node is
proportional to the fraction of the population with the specific immunity.
The band connecting nodes between waves represent the fraction of
population (proportion to band width) transitioning from one immunologic
state to another due to the impact of the epidemic wave of interest. D same
as (C) but for the urban site. *In additional to Delta, here also includes other
less frequent lineages including other lineages including Alpha and C.1.2
variants.
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higher level of protection against Delta (odds ratios: 0.40 (0.28–0.56)
and 0.44 (0.30–0.64), respectively) than against Omicron. Neither
Janssen Ad26.COV2.S (1 dose) nor Pfizer–BioNTech BNT162b2 vacci-
nation (1 or 2 doses) showed significant protection against Omicron
(Fig. 3), despite > 90% being administered within 5 months of Omi-
cron’s emergence. It is also worth noting that < 5% of participants (43/
905, Table 1) had received a complete vaccine schedule before Omi-
cron, resulting in limited statistical power and wide confidence inter-
vals on the effects of vaccination. However, hybrid immunity, defined
as a combination of one prior infection (with any variant) with one or
two doses of vaccines, conferred significant protection (odds ratio
0.40, 95% CI 0.27–0.58). Of note, repeat infections provided the
strongest protection against the Omicron BA.1/2 variant, reducing the
risk of infection by 85% (odds ratio 0.15, 95%CI 0.08–0.24). To explore
how immune waning may also affect the risk of infection, we per-
formed a sensitivity analysis by including an exponential waning term
on the effects of prior exposure (Detailed in Methods Section 4).
Waning did not significantly improve model fit, likely because it con-
flated with the period when specific variants circulated.While addition
of a waning term decreased some of the variant-specific effects, the
trends remained the same, with the earlier variant generating less
protection against Omicron than Delta (Fig. S7). The model with
waning also indicates a protection “half-life” of 229 days (95% CI
150–389days), in linewith the time scale of antibodywaningdescribed
in other studies18.

In terms of behavioral and demographic factors, we found that
the risk of transmission to household contacts (per-contact risk)
decreased significantly with the number of household members (odds
ratio 0.86, 95% CI 0.84–0.89, Fig. 3). Interestingly, we found that the
risk of acquiring infection within the household or from the commu-
nity varied substantially by age, sex and study site. Pre-school children
aged 0-4 years had much higher risk of acquiring infection within the
household relative to adults 35–49 years (odds ratio, urban site: 2.18,
95%CI 1.38–3.38; odds ratio, rural site: 4.58, 95% CI 3.20–6.45) but
much lower risk of acquiring infection from the community (odds
ratio, urban site: < 0.001, 95%CI 0.00–0.23; odds ratio, rural site: 0.08,
95% CI 0.01–0.31, Fig. 3). Similarly, individuals 60 years and older had

very low risk of acquiring infection from the community (odds ratio,
urban site: 0.23, 95% CI 0.05–0.60; odds ratio, rural site: 0.14, 95% CI
0.01–0.48). In the urban cohort, age group 19–34 years had the highest
risk of acquiring infection from the community as compared to
acquiring infection from the household (odds ratio: 1.64 with 95% CI
1.05–2.48), and so did age group 13–18 years in the rural site (odds
ratio: 2.69 with 95% CI 1.69–4.24). Females had a significantly higher
risk of infectionwithin thehousehold relative tomales in the urban site
(odds ratio female vs. male: 1.44, 95% CI 1.09–1.87) but there was no
difference in the rural site.

Comparing the disease severity of Omicron with that of earlier
variants
Estimating the severity of Omicron BA.1/2 remains difficult due to
profound changes in case reporting and the impact of prior exposures
on clinical presentation, relative to prior pandemic waves. We com-
pared our infection attack rate estimates with surveillance data to
evaluate the extent of under-reporting19. The cumulative SARS-CoV-2
incidence rate reported by the surveillance system for the Omicron
wave was 0.54 per 100 individuals in the health district of the rural site
(Ehlanzeni District) and 0.76 per 100 in the urban site district (Dr.
Kenneth Kaunda District). The infection ascertainment rate was esti-
mated at 0.84% in the rural site district and 1.31% in the urban site
district, considerably lower than the ascertainment rates of prior
waves 10,11, indicating that the surveillance system captured only a very
small fraction of all Omicron BA.1/2 infections.

In Fig. 4A, we estimate the infection fatality ratio (IFR) of
each epidemic wave in the urban site of the study, which is more
representative of South Africa’s urbanized population. We used
the in-hospital death rate reported to the COVID-19 National
Hospital Surveillance20 at the district level (as numerator, Fig. 4B)
and the age-specific infection rates estimated in the PHIRST-C
urban cohort (as denominator, Fig. 4C). We estimate that the IFR
was 0.043% (95% CI 0.040–0.047%) during the Omicron BA.1/2
wave, significantly lower than in the prior three waves (0.15% (95%
CI 0.13–0.17%) during the 1st wave dominated by D614G, 0.36%
(95% CI 0.30–0.46%) during the 2nd wave dominated by Beta,

Fig. 3 | Risk factors associated with SARS-CoV-2 Omicron BA.1/2 and Delta
infection. Odds ratios (adjusted after controlling for other risk factors, see Meth-
ods Section 4 for details) were estimated by a chain-binomial model fitted to the
infection outcome of n = 905 participants, where the Omicron BA.1/2 and Delta
infections was inferred by the serologic approach. Empty circles are reference
classes. Solid dots and lines represent maximum likelihood estimate and 95%
confidence intervals. Abbreviation: PLWH: persons living with HIV. Category

“Unknown” for “HIV infection status” and category “Rest” in “Prior exposure”
(Table 1) were included in the model but omitted here due to small sample size in
the strata. *0-4 age group have odds ratio point estimate less than 0.01, thus not
shown in the figure. #Non-primary infections represent repeat/breakthrough
infections. †Household size denotes the number of household members within a
household and is analyzed as a continuous variable.
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0.41% (95% CI 0.37–0.47%) during the 3rd wave dominated
by Delta).

In Fig. 4D–F, we deconstruct the infection profile of each epi-
demic wave to highlight the role of key factors affecting severity. Prior
immunity has an important role in shaping IFR, with the fraction of
primary infections decreasing with each new epidemic wave, from
100% during the 1st wave to 93%, and 73% and 28% during the Beta
(2nd) and Delta (3rd) and Omicron BA.1/2 (4th) waves (Fig. 4D).
Notable changes in the age patterns of infections in different waves
have also affected the IFR (Fig. 4E). In particular, the second wave had
the highest proportion of infections in individuals 60 years and older
(15%), followed by the 3rd wave (9%), 4th wave (6%), and 1st wave (5%).
Finally, each epidemic wave was dominated by a different variant
(Fig. 4F), and variations in the intrinsic severity of each variant would
also impact the observed variations in IFRs across different
epidemic waves.

Discussion
Our findings indicate that the Omicron BA.1/2 wave had significantly
higher attack rates than any of the previously circulating variants in
South Africa. The Omicron BA.1/2 wave infected 58% and 65% of the
population in our urban and rural cohorts respectively, despite high
levels of pre-existing population immunity. Reinfections and vaccine
breakthrough infections accounted for themajority of Omicron BA.1/2
infections, likely attributable to a minority of population remaining
naïve prior to the Omicron BA.1/2 wave and to Omicron BA.1/2’s
immune-escape properties16,21,22. Additionally, a household transmis-
sion model estimated that participants were more than twice as likely
to get infected during the Omicron BA.1/2 wave than the Delta wave,
after adjustment for prior immunity and other factors. These findings
support that the fitness advantage of Omicron BA.1/2 over Delta was
not solely due to immune escape but also higher intrinsic
transmissibility23. However, relaxing nonpharmaceutical interventions
during the Omicron wave likely also contributed to the higher infec-
tion risk during the Omicron BA.1/2 wave (vs. Delta wave), as prior to
the 4th epidemic wave (October 1, 2021), the national COVID-19 mea-
sures were tuned down to Alert Level 1, the lowest level in South
Africa’s COVID-19 alert system24. It is worth noting that our serologic

estimates of Omicron infection attack rates and the large contribution
of reinfections and vaccine breakthroughs are in close agreement with
earlier model projections for South Africa10 in the urban site, the
infection attack rate was estimated at 58.1% by serology vs. 44–81% by
model projections, while the proportion of reinfections was 71% by
serology vs. 49–72% by model projections. These projections were
based on a dynamic transmission model calibrated to the PHIRST-C
urban site population and solely relied on epidemiological evidence of
Omicron’s growth advantage and immune protection reduction10. The
concordance between model projections and post-projection ser-
ologic surveys highlights how mathematical modelling can synthetize
routine surveillance data and detailed cohort information to anticipate
epidemic size and other dynamical features of public health relevance,
months before serologic surveys become available.

A unique feature of our cohort populations includes intense
monitoring since the first SARS-CoV-2 epidemic wave, with nasal swab
collection at a twice weekly frequency, combined with frequent serum
specimen collection10. Based on variant-typed respiratory specimens
during the intense follow-up period9,10, serologic testing, as well as
information on vaccine administration, we had the unusual opportu-
nity to track each individual participant’s SARS-CoV-2 antigen expo-
sure history in chronological order. Random sampling of households
ensured that the immune exposure distribution within these cohorts
reflected the immunologic landscape of the broader population at the
study sites. After the third epidemic wave dominated by Delta, and
prior to Omicron’s emergence, more than 60% of the population at
both sites had been infected by and/or vaccinated against SARS-CoV-2
at least once, with limited occurrence of reinfections (Fig. 2, Fig. S5).
While there are different hypotheses addressing the evolutionary ori-
gins ofOmicronBA.1’s emergence and this variant’s unusual number of
mutations25, the rising level of SARS-CoV-2 exposure in South Africa in
2020–2021 would be expected to promote the fitness advantage of
immune escape variants over earlier variants. Globally, especially in
high income countries, a similar shift in the immunologic landscape
appears to have occurred, mainly via increased vaccine coverage,
allowing Omicron to out-compete other variants and rapidly reach
global dominance within 3 months of initial detection in Southern
Africa5. Our analysis suggests that even after controlling for prior

Fig. 4 | The infection fatality ratios and the factors associatedwith SARS-CoV-2
disease severity for different epidemic waves in the urban site’s district. A The
estimated infection fatality ratio for each epidemicwave.BThemortality burden of
each epidemic wavemeasured by the cumulative rate of in-hospital deaths per 100
individuals. C The infection attack rate of each epidemic wave in the North West
basedon the PHIRST-C urban cohort, assuming that the urban cohort population is
representative of the population of the North West Province. D The wave-specific
distribution of infection types based on prior exposure histories, including primary
infection, vaccine breakthroughs (1 or 2 doses of vaccines), reinfections (infection

after one prior infection), andmultiple prior exposures (infectionwith two ormore
prior infections or amixtureof prior infection and vaccination). EThewave-specific
age distribution of infections. F The wave-specific distribution of variant type
among infections.B–F Share the same axis on the right. *For the 4thwave, we could
not confirm variant type by variant-specific rRT-PCR or sequencing, however,
judging from the timing of emergence and dominance of Omicron in South Africa
in late November 2021, we assumed here that all infections during the 4th wave
were due to Omicron BA.1/2 variants.
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exposure, the transmissibility of SARS-CoV-2 during theOmicronwave
is substantially higher than that of theDeltawave (Fig. 3). This couldbe
due to Omicron’s enhanced infectiousness over Delta (higher intrinsic
transmissibility due to biological properties), further relaxation of the
non-pharmaceutical interventions during the Omicron wave (Fig. S8),
or a combination of both.

After the Omicron BA.1/2 epidemic wave in South Africa, only 5.7%
and 5.4% of the cohort population remained naïve to SARS-CoV-2 in the
rural and urban sites respectively, and past immune histories in the rest
of the population were highly diverse. Remarkably, the immunologic
landscape of the population has become highly fragmented, with no
single SARS-CoV-2 exposure category representing more than 25% of
thepopulation (Fig. 2). For instance, among379 individuals (acrossboth
study sites)whoexperienceda single SARS-CoV-2 exposure, 49.6% (188/
379)were infected by theOmicron variant and the rest were exposed to
pre-Omicron variants or vaccines. These two population groups primed
by different antigens will likely have different antibody responses as the
sera of individuals primed by pre-Omicron variants or vaccines poorly
neutralize the Omicron BA.1/2 variant and vice versa26,27. Among indi-
viduals that were primed by different types of pre-Omicron variants or
vaccines, differences in antibody responses are also expected, though
they would be less prominent than the differences between individuals
primed by the Omicron vs. pre-Omicron variants28.

After the 4th wave, among individuals who experienced two or
more SARS-CoV-2 exposures, most had experienced Omicron BA.1/2
reinfections or vaccine breakthroughs with Omicron (80.3%, Fig. 2C,
D). As SARS-CoV-2 moves into the endemic phase, multiple antigen
exposures will become the norm, and these complex exposure his-
tories will define population immune pressure to select new variants.
We can see some of this play out already in the rapid succession of
BA.1/2 andBA.4/5waves, with in vitro experimental and computational
predictive approaches informingwhichmutations are likely to become
successful. Deep mutational scanning experiments of the SARS-CoV-2
receptor binding domain suggest that further mutations of Omicron
BA.1/2 at sites 452 and 486 could lead to further immune evasion
against antibodies isolated from individuals who had pre-Omicron and
Omicron BA.1 breakthrough infections21,28,29. Our study suggests that
after the Omicron BA.1/2 wave, the population was dominated by
Omicron BA.1/2 convalescent individuals (Omicron BA.1/2 break-
throughs/reinfections in particular). Hence, the strongest immune
pressure would arise from these individuals. Strikingly, mutations
L452R and F486V have appeared in Omicron BA.4/5 lineages and these
variants have now caused a fifth epidemic wave in South Africa.
Interestingly, repeat infections by two or more pre-Omicron variants
accounted for only a small fraction of the population after the third
wave in our data, but these individuals retained great protection
against Omicron BA.1/2.

As a large fraction of the population in South Africa (and globally)
have experienced two or more antigenically distinct exposures invol-
vingOmicron lineages, prior variants, and/or vaccination episodes, the
potential impact of immune imprinting needs to be closelymonitored.
The effects of imprinting have already been observed, where, for
instance, individuals primed by spike-based vaccines have a more
spike-focused immune response, compared to individuals primed by
pre-Omicron infections (inwhich case, priming also includes non-spike
proteins)30,31. It will be important to evaluate how imprinting by Omi-
cron and pre-Omicron spike antigens differentially affects the immune
response. Several studies have demonstrated that the antibody
response after Omicron BA.1 breakthrough infection is dominated by
recall memory B-cells against conserved epitopes shared between pre-
Omicron strains and Omicron BA.1/2. Over reliance on immune
memory may impact the breadth and strength of antibody and B-cell
immunity as new antigenically drifted variants arise15,21,32,33. With each
new variant wave, and vaccine reformulation anticipated for later in
2022, imprinting could play a role in shaping future disease

trajectories. Ensuring the continuation of long-term cohort studies is
particularly key to answering this question and guiding future vaccine
updates.

Comparing our serology-based infection estimates with surveil-
lance data indicates that only the “tip of the iceberg” of all SARS-CoV-2
infections (less than 1%) were captured by routine surveillance during
the Omicron BA.1/2 epidemic wave in South Africa. On the other hand,
weekly case surveillance accurately captured the speed of Omicron’s
spread, and mathematical models calibrated to these data generated
early projections of epidemic size that are comparable to serologic
estimates10. Despite a particularly high rate of infection with the
Omicron BA.1/2 wave, there were fewer in-hospital deaths reported
during this wave than in all prior waves in South Africa, suggesting a
marked reduction in the overall infection fatality ratio (Fig. 4). The
lower estimated disease severity of Omicron BA.1/2 needs to be
interpreted in the context of changes in infection demographics, cir-
culating variant, and immunologic landscape across waves34,35. Firstly,
the intrinsic severity of Omicron BA.1/2 could be lower than that of
prior variants, especially when compared to Delta, as suggested by
observational studies36,37. In addition, in vitro studies support Omi-
cron’s limited ability to infect the lung38, which could be a potential
mechanism for Omicron BA.1/2’s observed attenuated severity. Sec-
ondly, the level of prior immunity was much higher during the Omi-
cron BA.1/2 epidemic wave, as shown in our data. If prior immunity
confers significant protection against SARS-CoV-2 deaths, as many
studies show, then the high level of prior immunity at the start of the
Omicron BA.1/2 wave would also contribute to the perceived
attenuation of disease severity. It is also worth noting that “survival
bias” could further underestimate the crude IFR, whereby frail indivi-
duals may have succumbed to earlier waves and left a healthier
population at the start of the Omicronwave39–41. Finally, the age profile
of infections could also influence the overall IFR, as the risk of SARS-
CoV-2 death increases exponentially with age, with most COVID-19
deaths concentrated in the population 60 years and older42. The pro-
portion of infections among individuals 60 years and older was 6.9%
during the Omicron wave, intermediate between prior waves. Future
cohort analyses of Omicron BA.1/2 disease severity need to carefully
adjust for age, prior infection and vaccination, and potential obser-
vational biases.

Our study has several limitations. First, Omicron BA.1/2 infec-
tions were ascertained by serology without confirmation by rRT-PCR,
and infections may have been misclassified due to imperfect sensi-
tivity and specificity of the serologic approach. We trialed the
approach during the Delta wave, by comparing serology with rRT-
PCR results. We optimized sensitivity and specificity of the serologic
approach based on the Youden’s J statistics (Fig. S3). Among 237 PCR-
confirmed primary Delta infections, only 11 were missed by our ser-
ologic approach (Fig. S9A). Of the 11 mis-classified Delta primary
infections, 7 were non-responders measured by the Roche Elecsys
Anti-SARS-CoV-2 nucleocapsid assay across all three blood draws, 2
wereweak responders (highest readout < 10) and 2 hadmis-classified
trajectory. Thus, the serologic approach may have missed a small
fraction of the primarily infected individuals who mounted a very
weak antibody response. On the other hand, among 51 PCR con-
firmed Delta reinfections, 10 were missed by the serologic approach
(Fig. S9B). This suggests the serologic approach was less sensitive in
detecting reinfections and we may be underestimating reinfections
during the Omicron wave. Refinement of the serologic analysis and/
or improved serologic assays more sensitive to waning43 could fur-
ther reduce potential misclassification. Second, the lack of virologic
samples hindereddifferentiation between theOmicron BA.1 and BA.2
lineages, which may have different epidemiological properties in
terms of transmissibility, immune evasion, and disease severity. Both
the urban and rural sites had low vaccination rates during the study
period. As a result, our assessment of the impact of vaccination
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remains uncertain due to limited sample size (Table 1), with wide
confidence intervals estimated by the chain-binomial model (Fig. 3).
Lastly, our study was concentrated on a relatively confined geo-
graphic scale and findings may not be representative of the broader
population in South Africa.

In conclusion, our study suggests the massive scale of the
Omicron BA.1/2 wave of infections in South Africa, orders of
magnitude larger than the observations based on surveillance
data. Reinfections and vaccine breakthrough infections domi-
nated this wave due to combined effects of Omicron BA.1/2’s
immune evasion properties and a high proportion of the popu-
lation with pre-existing immunity. The overall disease severity of
Omicron BA.1/2 was much lower than that of pre-Omicron waves,
reflecting the contribution of attenuated intrinsic severity of this
variant, but also changes in the age patterns of infections, and the
impact of prior immunity. The remarkably diverse population
immunologic landscape left by successive waves of SARS-CoV-2
will affect the epidemiological success of future variants. Our
study sites are uniquely located in a region which has witnessed
the emergence of key SARS-CoV-2 variants including Beta, Omi-
cron BA.1, BA.4, and BA.5. As we reach the endemic phase of
SARS-CoV-2, longitudinal studies will continue to be important to
monitor shifts in population immunologic landscape and provide
important context for understanding the fitness advantage and
adaptive evolution of current and future variants.

Methods
Cohort design and the timing of serum sample collection for the
Omicron BA.1/2 wave
The study builds on prior work on the PHIRST-C cohorts (PHIRST-C is
an acronym for Prospective Household study of SARS-CoV-2, Influenza
and Respiratory Syncytial virus community burden, Transmission
dynamics and viral interaction in South Africa, PHIRST-C, where “C”
stands for COVID-19). The PHIRST-C protocol was approved by the
University of Witwatersrand Human Research Ethics Committee
(Reference 150808) and the U.S. Centers for Disease Control and
Prevention’s Institutional Review Board relied on the local review
(#6840). The protocol was registered on clinicaltrials.gov on 6 August
2015 and updated on 30 December 2020 at:

• https://clinicaltrials.gov/ct2/show/NCT02519803
• https://clinicaltrials.gov/ct2/show/NCT05277298

Informed consent was obtained from all adult participants (aged
≥ 18 years), assent from children aged 7 to 17 years, and consent from a
parent or guardian for children younger than 18 years before data
collection. Participants receive grocery store vouchers of ZAR50 (USD
3) per visit to compensate for time required for specimen collection
and interview. Details on these South African cohorts have been pre-
viously described elsewhere9,10. To briefly summarize, the PHIRST-C
cohorts consist of 114 households (638 participants) in a rural site
located in Agincourt, a rural community in Mpumalanga Province, and
108 households (557 participants) in an urban site located in Jouberton
township, Matlosana, North West Province. These cohorts were sub-
ject to an intense period of follow-up, from July 2020 to August 2021,
during which nasal swab specimens were collected twice weekly and a
total of 7 blood draws (BDs) were collected at enrollment and then
approximately every two months. We used these data to reconstruct
the prior exposure history of each cohort individual before Omicron
arose, and to calibrate a serology-based approach to infer infections
during the Omicron period. After the intense follow-up period con-
cluded, three additional BDs were collected at both study sites (Fig. 1),
with BD 8 collected inmid-September 2021 (the end ofDeltawave), BD
9 in mid-November 2021 (at the time Omicron BA1/2’s emergence in
Southern Africa, but prior to the rise in reported cases), and BD 10 in
lateMarch 2022 (at the endofSouthAfrica’sOmicronBA.1/2wave).We

used these data to infer the Omicron infection status of each cohort
participant.

Laboratory methods
The laboratory methods of the intense follow-up period have been
described in detail in prior study by Cohen et al.9. Serum specimens
collected at blood draws 8, 9, and 10 follow the sameprotocol as those
for prior blood draws detailed in ref. 9: briefly, serum specimens were
collected using venous blood, centrifuged into serum separator tubes,
refrigerated immediately and transported to the NICD laboratories.
According to manufacturer instructions, aliquots of prespecified
volume were tested for the presence of SARS-CoV-2 antibodies by the
Roche Elecsys Anti-SARS-CoV-2 nucleocapsid (N) assay44.

Inference of SARS-CoV-2 Omicron infections among PHIRS-C
participants based on the antibody trajectory estimated from
pre- and post-Omicron BA.1/2 (4th) wave blood draws
Overview. As the PHIRST-C intense follow-up period ended in August
2021, individuals were no longer tested by rRT-PCR at twice-weekly
frequency, thus Omicron BA.1/2 infections in the cohort population
can only be ascertained through serology. We borrowed a paired sera
approach from prior influenza studies, where serum samples are col-
lected before and after the epidemic wave, with the rise in antibody
titers between the pre- and post-wave sera used as a marker of influ-
enza infection. This approach has been the gold standard to ascertain
influenza infection attack rate, as prior exposures were common in the
population45. To identify SARS-CoV-2 primary infections and reinfec-
tions during the Omicron BA.1/2 wave at both sites, we relied on the
serial serologic results of BD8, 9, (pre-OmicronBA.1/2wave) andBD 10
(post-Omicron BA.1/2 wave) by the Roche Elecsys Anti-SARS-CoV-2
nucleocapsid (N) assay (refer to as Roche anti-N here after). To capture
both primary infections and reinfections occurring in-between BD8, 9,
and 10, rather than relying on a boost of pre-post season paired sera as
the sole marker of infection45, we finely categorize the serial BDs pat-
terns based on the sequential seroconversion and boosting/waning
patterns of the Roche anti-N assay readouts. To trial the approach, we
relied on a study period surrounding the Delta wave where we had
both periodic serology and twice-weekly Rt-PCR testing on all indivi-
duals.Wematched BDs 8, 9, and 10 (4th wave dominated by Omicron)
with BDs 5, 6 and 8 (3rdwave dominated byDelta) based on the similar
timing of serum specimen collection with respect to the epidemic
curves of these waves (Fig. 1). We identified the serial serologic pat-
terns most strongly associated with rRT-PCR confirmed SARS-CoV-2
infections during the Delta wave. We then generalized the serial ser-
ologic patterns to BDs 8, 9, and 10 to infer Omicron BA.1/2 infections
during the 4th epidemic wave.

Categorization of serial serologic patterns during the 3rd and
4th epidemic waves in South Africa
The Roche anti-N is a commercial assay that was calibrated to detect
recent and prior SARS-CoV-2 infections, based on the level of serum
antibody against the SARS-CoV-2 N protein. The assay cutoff index
(COI) above or equal to 1 marks seropositivity, while a COI below 1 is
deemed seronegative44. We assessed each participant’s serial serologic
trajectory from pre- and post-wave serum specimens, measured by
Roche anti-N COIs. We used the assay seroconversion (anti-N COIs
going from below 1 to above 1) as evidence of primary infection. We
also used further rises inCOI froma seropositive baseline (COI above 1)
as a marker of reinfection, as a new exposure would be expected to
generate anamnestic boosting of anti-N antibody levels above prior
levels. We inferred SARS-CoV-2 primary infections and reinfections
during the 3rd epidemic wave based on participants’ serial serologic
trajectory from pre- and post-wave serum specimen (measured in
Roche anti-N COIs). We selected two BDs prior to the 3rd (Delta) epi-
demic wave (BD 5 and 6) and one BD at the end of the 3rd epidemic

Article https://doi.org/10.1038/s41467-022-35652-0

Nature Communications |          (2023) 14:246 8

https://clinicaltrials.gov/ct2/show/NCT02519803
https://clinicaltrials.gov/ct2/show/NCT05277298


wave (BD 8) (Fig. 1). We did not consider BD 7, because this offered an
extra sampling time point that we would not have for the Omicron
wave. We aimed to infer the occurrence of primary/repeat infections
that occurred betweenMay 1, 2021 (roughly themid-point between BD
5 and BD 6) and BD 8, covering the majority of the 3rd epidemic wave.
It’sworth noting thatwe chose themid-point betweenBD5 andBD6as
the start date of 3rd wave inference to mirror the timing of the Omi-
cron emergence in South Africa during the 4th wave, which roughly
falls in-between BD 8 and 9, in early November 2021.

As themajority of the 3rdwave infections occurred in-betweenBD
6 and BD 8 (Fig. 1), changes in the COIs from BD 6 to BD 8 are likely
most informative of SARS-CoV-2 infections between the two blood
draws. We categorized the sequential serologic patterns as follows,
based on the Roche anti-N assay:
1. Seroconversion from BD 6 (seronegative, COI < 1) to BD 8 (ser-

opositive, COI ≥ 1). This was likely due to a SARS-CoV-2 primary
infection occurring between BD 6 and BD 8. However, sero-
negativity at BD 6 could also correspond to a prior infection that
had sero-reverted by BD 6. In this case, seroconversion from BD 6
to BD 8 would suggest a reinfection between BD 6 and BD8. If
sero-reversion had occurred by BD6, then the individual should
be seropositive at the earlier blood draw (BD5).

2. If a participant was already seropositive at BD 6, we hypothesized
that a reinfection occurring between BD 6 and BD 8would induce
anamnestic “boosting” of the anti-N antibody level which could
lead to an increase in BD 8’s COI when compared to BD 6’s.
Evidence of reinfection isparticularly strong if theCOI of BD6was
lower than the COI of BD 5, establishing awaning baseline prior to
further exposure. In this case, serial COI is expected to follow a “V-
shape” trajectory from BD5-8, as suggested by a prior study also
using serial blood samples to detect reinfections46. Establishing a
waning baseline is especially informative for the Roche anti-N
assay. A prior study suggests that a small fraction of individuals
can show a gradual increase in Roche anti-N COI up to 4 months
after SARS-CoV-2 infection47, likely due to this assay using a dual-
antigen antibody detection method tuned for high avidity
antibodies48. Thus “double boosting” at BD 5, BD 6 then BD 8
may not necessarily suggest reinfection, and a boosting threshold
may be needed to differentiate strong boosting (most likely due
to reinfection) from weak boosting (due to the nature of the
Roche-N longitudinal kinetics or measurement error). We will
formally test these serial serologic patterns on their predictability
of SARS-CoV-2 infections through comparing them with rRT-PCR
confirmed infections during the Delta wave (detailed below then
in Methods Section 3.3).

Building on the above logic, we start by categorizing the serial
Roche anti-N COIs of BD 5, 6, and 8 into eight crude categories A, B, C,
D, E, F, G, and H based on seroconversion and boosting/waning of the
serial BDs’ COIs, specifically:

• Category A: Seronegative at each BD 5, 6, and 8. This pattern is
consistent with no infection before and during Delta wave.

• Category B: Seropositive at BD 5 followed by decreasing COIs
(waning) from BD 5 to BD 6 and further decline from BD 6 to BD
8. This suggests a prior infection before the Delta wave, and
waning during Delta wave.

• Category C: Seropositive at BD 5 followed by a rise in COI from
BD 5 to BD 6 (boosting) then a decline in COI from BD 6 to BD 8.
This could be evidence of re-infection between BD 5 and BD 6;
we further refine this logic to distinguish reinfection “boosting”
from long-term COI increase due to infection prior to BD 5 or
measurement noise (see below).

• Category D: Seronegative at BD 5 followed by seroconversion at
BD 6 then declining COI from BD 6 to BD 8. This is evidence of a
Delta infection between BD 5 and BD 6.

• Category E: Seropositive at BD 5 followed by rise in COI fromBD
5 to BD 6 then further rise of COI from BD 6 to BD 8. This could
be evidence of reinfection between BD 5 and BD 6 or reinfection
betweenBD6 andBD8;we further refine this logic todistinguish
reinfection “boosting” from long-term COI increase due to
infection prior to BD 5 or measurement noise (see below).

• Category F: Seronegative at BD 5 followed by seroconversion at
BD 6 and then boosting COI from BD 6 to BD 8. This could be
evidence of primary infection between BD 5 and BD 6 and/or
reinfection betweenBD6 andBD8;we further refine this logic to
distinguish reinfection “boosting” from long-term COI increase
due to infection prior to BD6ormeasurement noise (see below).

• Category G: Seropositive at BD 5 followed by waning COI from
BD 5 to BD 6 and boosting COI from BD 6 to BD 8. This could be
evidenceof reinfection between BD 5 andBD8; we further refine
this logic to distinguish reinfection “boosting” from measure-
ment noise (see below).

• Category H: Seronegative at BD 5 and BD 6 followed by ser-
oconversion in-between BD6 and BD 8. This is evidence of
primary infection between BD 6 and BD 8.

Figure S1A–H visualize the serologic trajectory of BD5, 6, and 8’s
Roche anti-N COIs for individuals in Categories A through H, respec-
tively. The quantitative criteria for the crude serial serologic pattern
categorizations are listed in Table S1 under “Categorization (crude)”.

A further rise of Roche anti-NCOIs among seropositive individuals
could be a marker for SARS-CoV-2 reinfections. To identify the degree
of boosting most concordant with reinfection, we refine the crude
categories listed above into finer categories by introducing a hyper-
parameter of boosting threshold γ>1: in a seropositive individual, a
further increase of COI above the threshold γ may indicate a stronger
signal of anamnestic boosting in antibody level due to reinfection,
while boosting below γ is consistent with the slow long-term rise of
antibody level from prior infection measured by the Roche anti-N
assay47,48 and/ormeasurement noise (see next section for calibrating γ
for the optimized sensitivity/specificity). This refined characterization
of serial serologic patterns is applied to crude categories C, E, F, and G
(categories with further boosting from seropositive baseline),
specifically:

• Category C is further divided into two sub-categories C0 and C1,
where C1 requires BD6/BD5 > γ and C0 requires BD6/BD5 ≤ γ.

• Category E is further divided into three sub-categories E0, E1, and
E2, where E2 requires BD8/BD6 > γ, E1 requires BD8/BD6 ≤ γ&BD6/
BD5 > γ, and E0 requires BD8/BD6 ≤ γ & BD6/BD5 ≤ γ.

• Category F is further divided into to two sub-categories F0 and
F1, where F1 requires BD8/BD6 > γ and F0 requires BD8/BD6 ≤ γ.

• Category G is further divided into two sub-categories G0 and G1,
where G1 requires BD8/BD6 > γ and G0 requires BD8/BD6 ≤ γ.

The quantitative criteria for the refined subcategorization
described above are also listed in Table S1 under the “Categorization
(refined)” of the 3rd epidemic wave. Similarly, we categorized serologic
patterns in BDs 8, 9, 10 (with BD 8matching BD 5, BD 9matching BD6,
and BD 8 matching BD 10) based on quantitative criteria listed in
Table S2. Fig. S2A–H visualize, from Category A through H respec-
tively, the serologic trajectory of BD8, 9, and 10’s Roche anti-N COIs.

Calibrating γ and selecting serial serologic patterns associated
with SARS-CoV-2 primary infections and reinfections among
PHIRST-C cohorts during the 3rd epidemic wave in South Africa
(intense follow-up period)
We optimized the γ value as well as serial serologic patterns that
best differentiated between individuals with SARS-CoV-2 primary
infections and reinfections from non-infected individuals. This
analysis was based on infections occurring between the mid-point
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of BDs 5 and 6 and BD 8, corresponding to the 3rd wave domi-
nated by Delta, in the period where rRT-PCR was available. We
scanned through γ values from 1 to 3 using a step size of 0.1.
Under each γ value, we iterated through each of the 13 refined
serial serology subcategories (A, B, C0, C1, D, E0, E1, E2, F0, F1, G0,
G1, H, detailed in Table S1). We calculated the net contribution to
the Youden’s J statistics if the pattern of interest was considered
as a marker of infection (primary or reinfections) during the time
window of interest (Youden’s J = sensitivity + specificity – 1, the
higher the value of Youden’s J, the better the performance of the
classification balancing both sensitivity and specificity). We then
selected all serial serologic patterns with net-positive contribu-
tion to the Youden’s J statistics as markers for infection, while the
rest of the 13 serial serologic patterns were markers of non-
infection. This gave the best Youden’s J statistics under a given γ
value. We found that at γ = 1.4, we arrived at the highest Youden’s
J statistics of 0.820 and good sensitivity (0.804) for reinfections
(Fig. S3) with patterns E2, F1, G1, H indicating SARS-CoV-2 infec-
tions while the rest (A, B, C0, C1, D, E0, E1, F0, G0) indicating
absence of infections (Fig. S4 & Table S1). We generalize this
categorization of infections (E2, F1, G1, H) vs non-infections (A, B,
C0, C1, D, E0, E1, F0, G0) to BDs 8, 9, 10 to infer infections during
the 4th (Omicron BA.1/2) wave.

Chain-binomial SARS-CoV-2 household transmission model
Here we studied predictors and risk factors of SARS-CoV-2 infection
during the Delta and the Omicron waves, in particular the con-
tribution of prior immunity, demographic and medical character-
istics, other infections in the household, and the risk of infection
from the community. We used a chain-binomial household trans-
mission model for SARS-CoV-2, as an extension of prior household
models developed to study influenza transmission49,50. We jointly
fitted the model to both the 3rd (Delta dominated) and 4th waves
(Omicron BA.1/2), using serology-inferred infections as the out-
come, as described in Section 3. Our model considers both
community-acquired infections as well as multigenerational trans-
mission within the household.

We denote Pj
c as the risk of individual j acquiring infection from

outside the household (community); tomodel the risk of transmission
between household contacts, we denote Pij

hh as the risk of an infected
household contact i infecting household contact j in household h. We
can express Pj

c, P
ij
h as:

Pj
c = Pc exp

X

k

αkak +
X

l

θmcm

 !
;Pij

h =Phh exp
X

k

αkak +
X

l

βlbl

 !

ð1Þ
where:

• Pc denotes the baseline SARS-CoV-2 community infection risk.
• Phh denotes the baseline risk of SARS-CoV-2 transmission

between an infected and another uninfected household contact.
• ak denotes risk factors k shared by community-acquired

infection and household transmission, including, variant-
specific transmissibility, variant-specific susceptibility due to
prior exposure history, and HIV infection status (see Fig. 3).

• bl denotes household-specific risk factor l that could potentially
influence household transmission, including transmissibility of
primary vs breakthrough infections, household size, site-specific
age & sex (see Fig. 3).

• cm denotes community-specific risk factor m that could
potentially influence the acquisition of infection from the
community, including site-specific age & sex (see Fig. 3).

Let h denote a household, i an individual, and ih� an individual i
who remained infection-free during the Delta/Omicron waves in

householdh, while ih+ is an individual iwhowas infected inhouseholdh
(as determined by serology). We can then express the probability of
household member i escaping infection from all infected household
contacts as:

eihh =
Q
j≠if g

ð1� Pij
hÞ ð2Þ

where j ≠ i
� �

represents all infected household contacts. We can also
express the probability of household member i escaping infections
from the community as:

eic = 1� Pi
c

� �
ð3Þ

Thus, within household h, the likelihood of a household contact i
being non-infected is given by:

li� = eice
i
hh

ð4Þ

And the likelihood of an individual i being infected is given by:

li+ = 1� li� ð5Þ

For household h, the loglikelihood of observing the infection
status of all household contacts is given by:

log lh
� �

=
P

ih+
� � log li+

� �
+
P

ih�
� � log li�

� �
ð6Þ

The overall likelihood of the observations across all households is
given by:

log Lð Þ= P
h
log lh
� �

ð7Þ

We usedmaximum likelihoodmethod to optimize the function
of log(L), and obtain point estimates of αk

� �
, βl

� �
, θm

� �
. The full list

of the risk factors αk

� �
, βl

� �
, and θm

� �
can be found in Table S3. We

performed a model selection analysis on the risk factors by incor-
porating the risk factors in a stepwise fashion and calculate the
loglikelihood and the Akaike information criterion (AIC) for
each model. The results of the model selection analysis are repor-
ted in Table S3, with “Model 0” representing null model having no
risk factors included and “Model 9” representing the full model
used in the main text. The estimates of “Model 9” are presented
in Fig. 3.

As a sensitivity analysis for the Delta wave infection, in addition to
fitting “Model 9” to Delta wave infections inferred solely by the ser-
ologic approach, we consider another scenario where Delta wave
infections were either inferred by the serologic approachor confirmed
by the rRT-PCR. Among 237 PCR confirmed primary Delta infections,
only 11 weremissed byour serologic approach (Fig. S9A). Of the 11mis-
classified Delta primary infections, 7 were non-responders measured
by the Roche Elecsys Anti-SARS-CoV-2 nucleocapsid assay across all
three blood draws, 2 were weak responders (highest readout < 10) and
2 hadmis-classified trajectory. Thus, the serologic approach may have
missed a small fraction of the primarily infected individuals who
mounted a veryweak antibody response. On the other hand, among 51
PCR confirmed Delta reinfections, 10 were missed by the serologic
approach (Fig. S9B). In the sensitivity analysis, we combined the 21 rRT-
PCR confirmed Delta infections with the serologic inferred Delta
infections and fitted it to “Model 9”. The results of this sensitivity
analysis were presented in Fig. S6.

Lastly, we consider amodel explicitly incorporating the waning of
immunity, indexed “Model 10”. On top of “Model 9”, which explicitly
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consider the effect of waning. Specifically, if we denote αim

� �

( αim

� � � αk

� �
) as relative odds of infection associated with immunity

due to prior exposure with respect to naïve individuals, for each
αim 2 αim

� �
, we can express αim as αim =αt =0

im × exp �ln2 t
τ

� �
, where t

denotes the time since prior infection/immunization, τ denotes the
half-life of the relative odds,αt =0

im denotes the relativeodds of infection
right after infection/immunization. We assume a constant waning rate
for all types of prior exposures; thus “Model 10” introduce only one
extra parameter τ over “Model 9”. The estimates of “Model 10” were
presented in Fig. S7.

For all models, weminimized the negative of the log(L), using the
optimize.minimize function of python’s scipy package51 (python ver-
sion 3.8.11, scipy version 1.7.1) with the “Broyden–Fletcher–
Goldfarb–Shanno” algorithm52. The corresponding 95% confidence
intervals were calculated based on Wilks statistic (likelihood
ratio of 1.92).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Aggregate data to reproduce the figures are available at https://
doi.org/10.5281/zenodo.7260083. Individual-level data cannot be
publicly shared because of ethical restrictions and the potential
for identifying included individuals. Accessing individual partici-
pant data and a data dictionary defining each field in the dataset
would require provision of protocol and ethics approval for the
proposed use. To request individual participant data access,
please submit a proposal to C.C. who will respond within 1 month
of request. Upon approval, data can be made available through a
data sharing agreement.

Code availability
Code to reproduce the figures, and the chain-binomial transmission
model are available at https://doi.org/10.5281/zenodo.7260083.
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